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The structure and evolution of homogeneous stably stratified sheared turbulence 
have been investigated through direct numerical simulation. In these simulations the 
primary dimensionless parameter is the Richardson number which measures the 
relative importance of stratification and mean shear. 

For Richardson numbers less than the transition value the Reynolds stress and 
vertical density flux are down-gradient. Some of the vertical kinetic energy gained 
indirectly through production is expended in creating potential energy. Included in 
this shear-dominated regime is the stationary Richardson number at which the 
turbulent kinetic energy is constant in time although the spectra are evolving. At low 
dimensionless shear rate the stationary Richardson number increases with increasing 
Reynolds number. 

At  the transition Richardson number the maximum anisotropy and energy 
partition are achieved. For larger Richardson numbers potential energy is released 
into vertical kinetic energy and the vertical density flux becomes counter-gradient. 
The associated production reversal enhances the decay rate of the turbulent kinetic 
energy. 

The effects of other dimensionless parameters have been investigated. After initial 
transients the developed flow is rather insensitive to the presence of significant initial 
potential energy. An increase in the Schmidt number increases the effect of stable 
stratification, e.g. the counter-gradient vertical density flux occurs earlier. 

In the shear dominated case the down-gradient fluxes are produced by the 
pumping of fluid through coherent hairpin-shaped vorticity. In  the buoyancy 
dominated flow the counter-gradient fluid parcels induce helical vorticity structures 
as they move toward a position of neutral buoyancy. 

1. Introduction 
In both the atmosphere and the ocean, characterizing the small-scale turbulence 

is essential to understanding the vertical momentum and mass transport (Hopfinger 
1987 ; Van Atta  1985). However, because the turbulence may be significantly altered 
by stable stratification, estimation of the vertical fluxes using only laboratory and 
field data may be very difficult. The accurate solution of the equations which govern 
stably stratified sheared turbulence is therefore an attractive approach to 
understanding such flows. 

The general objective of this work was to investigate the effect of stable 
stratification on turbulent homogeneous shear flow by means of direct numerical 
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simulation. Because such simulations are restricted to low Reynolds numbers the 
applicability of the numerical results to higher-Reynolds-number flows must be 
addressed. This was accomplished by comparing the simulation results to 
experimental data and by numerically studying the effect of Reynolds-number 
variation over the limited range accessible. 

We begin with a brief description of previous related studies. In  light of the volume 
of such work we only discuss those studies closely related to our own work. 

1.1. Previous studies 

Early analytical studies of homogeneous shear flow were conducted by von K k m h  
(1937). Several experimental studies followed, including the high-Reynolds-number 
passive scalar experiments of Tavoularis & Corrsin (1981) and the lower-Reynolds- 
number experiments of Rohr et al. ( 1 9 8 8 ~ ) .  Both sets of experiments revealed an 
increase in the turbulent kinetic energy with increasing streamwise distance. The 
linearized analysis of Deissler (1961) revealed that the production of turbulent 
kinetic energy occurs at the largest lengthscales. 

Recent direct simulations of homogeneous shear flow were performed by Rogers, 
Moin & Reynolds (1986). The instantaneous fields revealed the presence of coherent 
hairpin-shaped vorticity. These structures correspond to regions of intense turbulent 
kinetic energy production and vertical scalar flux. The hairpin structures found in 
the homogeneous flow (Rogers et al. 1986) resemble these found in regions far from 
the solid boundaries in the simulated turbulent channel flow of Moin & Kim (1985) 
and in the experimental visualization of a turbulent boundary layer by Head & 
Bandyopadhyay (1981). Robinson (1990) showed that contour surfaces of low 
pressure in the simulated boundary-layer results of Spalart (1988) also resembled 
one- and two-legged hairpins. 

The behaviour of stably stratified turbulence without mean shear has been studied 
in several different experiments. The intuitive notion that the vertical velocity is 
suppressed by stable stratification was borne out by the experiments of Britter et al. 
(1983) and can be explained as a conversion of vertical kinetic energy into potential 
energy (Britter 1988). 

The experiments of Stillinger, Helland & Van Atta (1983) showed that, at  the 
onset of buoyancy effects, the scale of overturning motions (adapted from Ellison 
1957) was approximately equal to the Ozmidov (1965) scale at which buoyancy 
forces are significant. As the flow evolved further the vertical density flux crossed 
zero, possibly indicating the presence of internal waves (Stewart 1969). In  agreement 
with the predictions of Gibson (1980), Stillinger et al. (1983) showed that the 
lengthscales of active turbulence are confined between the decreasing Ozmidov scale 
and the increasing Kolmogorov scale. 

Itwseire, Helland & Van Atta (1986) extended the experiments of Stillinger et al. 
(1983). They showed that the peak in the vertical density flux, which corresponds to 
the onset of buoyancy effects, occurs at the dimensionless time Nt z 1.7, where N is 
the Brunt-Vaisala (BV) frequency. A t  Nt x 3 the vertical density flux crosses zero, 
indicating that the turbulence is buoyancy dominated. 

The air-flow experiments of Lienhard & Van Atta (1990) revealed a vertical heat 
flux reversal at larger scales coincident with the time, Nt x 3, a t  which the globally 
averaged flux became zero. However, the corresponding phase correlations did not 
support the existence of internal waves. 

Gargett, Osborn & Nasmyth (1984) analysed field observations of stably stratified 
turbulence in the wake of a sill. They found that as the turbulence decayed the 
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stratification induced anisotropy in the largest scales but the dissipation scales 
remained isotropic. 

The first direct simulations of stably stratified turbulence were performed by 
Riley, Metcalfe & Weissman (1981). They observed oscillatory behaviour in the 
vertical kinetic energy and the potential energy. The exchange of energy between 
these two forms was explained in terms of the vertical density flux which oscillated 
about zero. 

The first successful experiments of stably stratified homogeneous shear flow were 
performed by Rohr et al. (1988b). The Richardson number at  which turbulence 
growth was suppressed was found to be 0.25 & 0.05, in apparent agreement with the 
inviscid linear stability analysis of Taylor (see Miles 1961). In the cases which 
exhibited turbulence growth, both the overturning scale (Ellison 1957) and the 
Ozmidov scale grew, but their ratio approached a constant. When growth was 
suppressed the ratio of these scales approached the value found in the unsheared 
experiments of Stillinger et al. (1983). 

The rapid distortion analysis of Hunt, Stretch & Britter (1988) showed that the 
temporal oscillations of the vertical velocity in the unsheared flow are damped in the 
presence of shear. Coincident with the vertical density flux reversal at  Nt = 2 the 
Reynolds stress became counter-gradient (CG), i.e. there was a reversal in turbulence 
production. 

In their simulations of randomly forced stably stratified turbulence, Herring & 
MBtais (1989) found that the velocity field becomes nearly two-dimensional in 
agreement with the assertion of Riley et al. (1981), but the vertical variability of the 
horizontal layers controlled the dissipation rate. A weak inverse cascade of energy 
was also evident, a result consistent with the experimental results of Itsweire & 
Helland (1989). 

The finite difference-spectral simulations of Gerz, Schumann & Elghobashi (1989) 
were the first numerical simulations of stably stratified sheared turbulence. They 
revealed the existence of a small-scale CG heat flux which was persistent in time a t  
large Richardson number. According to the authors, the relatively small scalar 
dissipation rate at  low Reynolds number and high Prandtl number sustains small- 
scale temperature fluctuations which become CG. The simulation results were also 
used to test the pressure-strain and pressure4emperature gradient closure models of 
Launder (1976), which were found to underestimate buoyancy effects at  large 
Richardson number. In a related study, Gerz & Schumann (1989) varied the initial 
amount of potential energy over a relatively small range and found no significant 
differences in the flux development, aside from minor initial deviations. 

1.2. Research objectives 
The results of previous studies reveal issues which warrant further research and lead 
directly to the objectives of this investigation. First, the behaviour of the flow in 
terms of globally averaged statistics has not been thoroughly classified as a function 
of the Richardson number. Secondly, a systematic study of the effects of other 
dimensionless parameters is needed. These parameters include the Reynolds number, 
Schmidt (Prandtl) number, dimensionless shear rate (not discussed in this paper), 
and initial potential energy. Finally, the nature of the coherent structures a t  large 
Richardson number has not been completely determined. This structure must be 
known before its relationship to the transport processes can be established. 

In  the following section the governing equations and their numerical solution is 
described. The initial conditions used in the simulations are described in $3. The 
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validation of the numerical method is then discussed in $4. This is followed by a 
discussion of the flow behaviour in terms of the Richardson number in $5. Section 6 
contains a description of the effects of relevant parameters and is followed by a 
discussion of coherent structure in $ 7. 
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2. Mathematical considerations 
2.1. Fundamental equations 

The theoretical basis for this study is the conservation of mass equation for an 
incompressible fluid, the Boussinesq form of the Navier-Stokes equations, and a 
transport equation for the density : 

u,,, = 0, (1) 

P, t + uj p , j  = ~ ~ , j j >  (3) 

P = Po+S,xz+P ( P  = PO+S,%), (4) 

where the density is expressed as 

and where po is a constant reference density, p is the mean density, S, is the specified 
mean density gradient, and p is the fluctuating density. The pressure is denoted by 
P to signify that the hydrostatic pressure variation due to the mean density has been 
removed. 

I n  the above equations the Einstein summation convention has been adopted and 
a comma denotes differentiation. This convention will be used interchangeably with 

( 5 )  
the Cartesian system 

(6) 

u, = (U1, u,, Us) = (U,  v, W ) ,  

xj = (21, x2,zJ = (x, y, 4. 

2.2. Solution procedure 

I n  this section we briefly describe the numerical method. For additional details see 
Holt (1990). As described by Batchelor (1953) and Townsend (1976) the statistical 
properties of homogeneous turbulence are invariant to  translation, i.e. their spatial 
gradients are zero. Accordingly, the specified mean velocity and mean density 
gradients must be constant. The mean velocity, Oi, is introduced by the change of 
variables 

u, = ui+ui, ui = (Sx , ,O,O) ,  (7) 

where S is the shear rate and is the only non-zero element of the mean flow 
deformation tensor, i.e. S = ul,2. The mean density, p,  was defined in (4) and, 
for future reference, a mean density gradient vector will be defined as p,,, with the 
only non-zero element being S, = p, 2. (The overbar defines a mean quantity which in 
these calculations refers to  an ensemble average, not a volume average, over the 
solution domain.) 

A homogeneous flow must be, in principle, unbounded. However, the numerical 
solution domain is finite and any boundary conditions selected will therefore be 
artificial. This requires that the simulation be monitored to ensure the solution is 
independent of the boundary conditions. 

The simplest boundary condition is periodicity which also allows the use of highly 
accurate Fourier series representations of the fluctuating quantities. However, when 
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the change of variables given by (4) and (7) are introduced into the governing 
equations (1)-(3), the mean flow quantities will produce spatially dependent 
coefficients and the solutions cannot satisfy periodic boundary conditions. This 
difficulty can be resolved by introducing a coordinate system that translates with the 
mean velocity (Rogallo 1981). The new coordinates will be denoted &; they are 
related to the stationary coordinates by 

6 k  = M k j x j 9  (8) 

7 = t ,  (9) 

where the non-zero components of Mk, are M,, = p,, M,, = p2, M33 = P a ,  and 
M,, = -Srpl. The constants PI, p,, and p3 are used to map the domain in x-space to 
a cubic box of length 2n in 6-space. 

Following the pseudo-spectral method (see Orszag 1969) of Rogallo (1981) the 
nonlinear terms are calculated in physical space. Transformations between physical 
and wave space are accomplished via the fast Fourier transform algorithm originally 
developed by Cooley & Tukey (1965). 

The resulting ordinary differential equations are advanced in time using a second- 
order Runge-Kutta method. A second-order method was chosen to minimize storage 
requirements and to implement the random phase shift de-aliasing scheme of Rogallo 
(1981). Finally, the evolving solution consists of the Fourier coefficients of the 
fluctuating velocity, Zi,, and the fluctuating density, 6, in wave space (K, ,  K, ,  K ~ ) .  

2.3. Transport equations 

The transport equation for the Reynolds stress (in physical space) may be obtained 
by standard methods (see Hinze 1975): 

where 

%j = 2vuts k uj ,  k .  (15) 

In the above equations 4, is the production due to the mean velocity field, qj is the 
redistribution due to pressure-strain interactions (q, = 0 ) ,  B ,  represents the effect of 
buoyancy forces, and ei, is the dissipation due to viscous processes. In an analogous 
manner an equation for the turbulent density flux can be derived: 

(16) 
-- 1- 1+Pr - 

Po Po 
(z). t = - (Pukui, k + U i U k P ,  k ) - ' @ ' i 2 + - P P , i - F  ' P ,  k ' i ,  k ,  

where Pr is the Prandtl Number. For later reference the transport equations 
governing the non-zero R, and z correlations are given below in Cartesian notation. 
First, we obtain the equation for the turbulent kinetic energy by taking the trace of 
(10) : 
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where q2 = Rii is twice the turbulent kinetic energy and 
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An equation governing the turbulent density correlation may also be derived 

where 

Finally, (10) and (16) in Cartesian notation are : 

- au au 
-= -2uvs+-p -+- -2v---, (a, au) axkaxk 
auu 
at Po ax ax 

at 

(24) at 

- 1+Pr av ap 
-= -vvS,--pp+-p - -- 

aup - 1+Pr au ap 
-= -uvsp-vps+-p - -- 

at Po 9 -  Po (3 Pr yaz,a~,' 

at Po (3 P r  vGG' 
where the remaining correlations are zero by the spanwise symmetry imposed by the 
mean fields. 

To end this section we note the following points. First, the deformation tensor of 
the velocity field, l J i 3 j ,  can be decomposed into the symmetric strain rate tensor, S,, 
and the anti-symmetric rotation rate tensor, SZ,, (Townsend 1976). The mean flow 
deformation is decomposed as follows 

- - s, = #7i,5+a5,i), a, = ;(17i*j-qi). (27) 

The strain rate is plane strain with expansive strain inclined a t  45" from the 
horizontal and compressive strain a t  135". The rotation - -  rate corresponds -- to  solid- 
body rotation about the x,-axis. Also, 2 9  = &, = -2uiuk Ui, = -2uiu,S,!, since 
the product of a symmetric tensor and an asymmetric tensor, -2u&a,k, is zero. 
Therefore, the turbulent kinetic energy is produced by the mean strain but not by 
the mean rotation (Rogers et al. 1986). 

2.4. Statistical quantities 

The numerical simulation results consist of the Fourier coefficients of the turbulent 
velocity and scalar fields. I n  this section these coefficients are related to the standard 
statistical measures which are used in this paper including lengthscales, two-point 
correlations, and energy spectra. 
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E,, is termed the three-dimensional energy spectrum tensor. Since the velocities 
are real in physical space, the Fourier coefficients form a complex conjugate set. The 
three-dimensional energy spectrum tensor is also the Fourier transform of the two- 
point velocity correlation (Hinze 1975 ; Townsend 1976) : 

where Qu, the three-dimensional two-point correlation, is defined as 

In homogeneous turbulence Qtj is only a function of separation distance, r l ,  since 
statistical quantities are independent of position, 2,. The two-point correlation is 
also symmetric, therefore E ,  = Ej!. 

Spectral statistics may be derived from E ,  by summing over selected wave- 
numbers. The one-dimensional energy spectrum in the K~ (a = 1,2,  or 3) direction is 

E&,) = E ,  k, K p  K y )  dKjdKy (a 4 P * 7) .  I 
By integrating over spherical shells the radial energy spectrum is obtained 

r 

The one-dimensional two-point correlation is 

Q i j  (ra) = J Q i j  (ra, r j l  ~ y )  drjjdry (a * P * 7) .  

This leads to the definition of the integral scale 

Finally, the Taylor microscales are defined by 

where primes denote r.m.8. quantities. For example, u;, = (ul,  ul ,  2)i. 

3. Initial conditions 
To ensure accurate resolution of all relevant scales of motion and to enable the 

simulations to be extended to large dimensionless times the initial conditions need to 
be carefully designed. 

The initialization algorithm in this and other direct simulation methods (Gerz et al. 
1989; Riley et al. 1981) produces the specified initial radial energy spectrum 
E = ( K )  and satisfies the conservation of mass equation but does not yield 
nonlinear spectral transfer of energy. Zero transfer initial conditions are acceptable 
provided the ratio of the turbulence and mean flow timescales, S* = Sq2/s, is 
sufficiently small (see also Rogallo 1981 ; Rogers et al. 1986). In other words, the mean 
shear must not dominate the turbulence and prevent nonlinear interactions from 
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Ri variation simulations (h  series) 

N, 7 Nu 7 N, 

8, v, 9, Po 202/2,0.01,980.665,1.006 
K,,. K,, e,  e,,Re,,Re, 16,32,1,0,52,57 

128,128 128 
PI? PW P a  2-f,2i, 2i 

Run designation Ri 

ge 
hb 
hd 
hc 
hf 
he 
hg 

0.0 
0.058 
0.088 
0.113 
0.25 
0.5 
1 .o 

TABLE 1 .  Simulations in which the Richardson number was varied, denoted as the 
h series simulations 

Reo variation simulations (5 and y series) 

128,128 128 

1.0,980.665,1.006 
2-I, 29,2$ 

Run designation Ri s, v Ko,K,,e,ep,ReA,Re,, 
la 0.058 40.\/2,0.02 16,32,1,0,26,29 
xb 0.113 10.\/2,0.005 16,32,1,0,104,115 
xc 0.5 10.\/2,0.005 16,32,1,0, 104, 115 
Y& 0.15 10.\/2,0.005 4,40,0.&,0,104,155 
Yb 0.5 10.\/2,0.005 4,40,0.&0,104,155 
Yd 1.0 10.\/2,0.005 4,40,0.1,0,104,155 

TABLE 2. Simulations in which the initial Reynolds number was varied, denoted as the 
2 series and y series simulations 

Sc variation simulations ( p  series) 

N,,N,,N, 128,128 128 

8, v, 9, Po 202/2,0.01,1.0,980.665,1.006 
Ko*Kcr e,e,,Re,,Re,, 16,32,1,0,52,57 

/ % P 2 ~ / %  2-%, 2t, 2i 

Run designation Ri s c  

Pd 0.088 2 
PI 0.5 0.1 

Pe 0.5 2 
Pg 0.5 4 

Pm 0.5 0.5 

TABLE 3. Simulations in which the Schmidt number was varied, denoted as the p series simulations 
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to variation simulation ( e  series) 

NZ> N,  1 N, 

s, v, sc, g, po 

128, 12fJ1 128 

202/2,0.01,1.0,980.665,1.006 
BPBW B s  22, &2r 

Run designation Ri K ~ ,  K,, e ,  ep, Re,, Re, T O  

ec 0.088 16,32,1,4.91 x 10-6,52,57 2 
ea 0.5 16,32,1,1.40 x 10-4,52, 57 1 
ed 0.5 16,32,1,9.82 x 10-4,52,57 7 

TABLE 4. Simulations in which the initial ratio of potential to vertical kinetic energy was 
varied, denoted as the e series simulations 

Simulations of Rohr’s (1985) experiments ( r  series) 

128,128,128 
i,i, t 
1.13,0.01,2.0,980.665,1.006 

Run designation Ri K ~ ,  K,, e ,  ep,  Re,, Re, 

ra 0 0.25,9.0,0.303,0,99,212 
rb 0.075 0.25,10.0,0.272,5.55 x 10-1°,92, 195 
rc 0.21 0.25,11.0,0.2465,2.09 x lo-@, 87,183 
rd 0.37 0.25,11.0,0.2465,3.91 x 10-8,87,183 
re 1.0 0.25,11.0,0.2465,3.91 x 1WS, 87,193 

TABLE 5. Simulations that replicate the experiments of Rohr (1985), denoted aa the 
r series simulations 

developing. In the low shear rate simulations reported in this paper the dimensionless 
shear rate, S*, was initially approximately 5 and increased in time to approximately 
11. This asymptotic value agrees with the experimental data of Tavoularis & Corrsin 
(1981) and Rohr (1985). 

For low shear rate simulations pulse initial spectra are also acceptable, and the 
calculations are initiated by specifying the energy spectra as follows 

E ( K )  = e ( K ~  < K < K,) ,  

E ( K )  = 0 ( K  < KO, K > K,), 

(35) 

(36) 

and by assuming the initial potential energy is zero (see 56.2). In (35) and (36) e is 
a constant, and K~ and K, define the width of the pulse. Zero initial energy was 
specified in the range K < K~ to accommodate large-scale growth. 

The simulation parameters (in cgs units) are summarized in tables 14. Each table 
summarizes the simulations designed to investigate the effects of varying one of the 
following parameters : Ri, Re, Sc, and 7 = PE/VKE (see following text for definitions). 
For completeness, we have also listed the initial conditions used to simulate the 
experiments of Rohr (1985) in table 5. In these tables N,, Nu, and N, are the numbers 
of grid points, and B1, Bz, and /I3 are coordinate stretching factors. The computational 
domain was longer in the streamwise direction, i.e. /I1 < p2 = p3 to allow for shear- 
induced growth of the integral scales. The column headings K ~ ,  K,, e, and ep, refer to 
the pulse initial spectra for hz and 97. (The initial velocity and density fields were 
uncorrelated.) The initial Reynolds numbers Re, = qh,,,,/v and Re,, = qAll;l/v are 
also listed. 

17 FLY 231 
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4. Validation of the numerical method 
Before procecding with the numerical investigation of stably stratified shear flow, 

a series of simulations was performed to validate the numerical method. Preliminary 
validation studies including reproducing some of the unstratified shear flow 
simulations of Rogers et aE. (1986), the stratified unshearcd simulations of Riley et aE. 
(1981), and the stratified shear flow simulations of Gerz et al. (1989). The results of 
these comparisons indicate that the present numerical method performs satisfactorily 
(see Holt 1990). 

The final validation study was a direct simulation of the experiments of Rohr 
(1985), see also Rohr et al. (1988b). These results will be presented in detail to  
introduce the effects of Richardson-number variation. 

Comparison between the simulated and experimental results will be shown for 
Richardson numbers, Ri, of 0, 0.075,0.21, and 0.37 (based on initial conditions) with 
additional simulation results a t  H i  = 1.0. The Richardson number is defined as 

where N is the Brunt-Vaisala frequency. 
The experimental data nearest the grid were reported a t  a dimensionless time 

St % 1.2. This required that isotropic initial conditions (St = 0) be specified in the 
simulations and allowed to develop to St = 1.2 so as to achieve agreement with the 
measured u’, v’, p’, and 6 .  Comparison between the physical experiments, which vary 
in space, and the numerical simulations, which vary in time, were effected by a 
Galilean transformation of the numerical data using the mean velocity (z = Ot). 

Figure 1 presents the r.m.s. streamwise velocity fluctuations, u‘, as a function of 
dimensionless time, St. At Ri = 0, u’ increases with time (after an initial decay) owing 
to the production term -2uvS in (21). This may be explained by considering a 
positive vertical velocity fluctuation (v > 0) which moves a parcel of slow fluid 
(u < 0) upward into faster fluid, resulting in uv < 0 and a positive production term. 
(Production also results from the downward movement of faster fluid ; essentially 
this is the basis of Prandtl’s mixing length model.) As Ri increases the growth rate 
of u’ decreases owing to the suppression of production, as discussed below. The 
agreement between the numerical and experimental results for St < 6 is only fairly 
good. The discrepancy is partly due to grid-induced anisotropy in the experiment 
which resulted in u‘ > v’ initially. In addition, the experiments exhibit quasi- 
isotropic decay for longer times than the simulations. 

The vertical velocity development is shown in figure 2. At  Ri = 0, v‘ increases even 
though there is no production term in (22). In this case energy is transferred from u’ 
to v’ through pressure-strain redistribution. (The behaviour of the pressure-strain 
and pressure-density gradient terms in (21)-(26) are reported in Holt 1990.) The 
growth of v’ is reduced with increasing Ri for two rcasons. First, with the decrease 
in u‘. less energy is transferred to v’. Secondly, the stable stratification, through the 
term -2(g/po)@ in (22), limits the growth of v’. As explained above, a positive 
vertical velocity fluctuation lifts slow fluid into faster ambient fluid. The slow fluid 
also originates in a region of heavy fluid (p > 0) which is lifted (v > 0) into lighter 
fluid, resulting in vp > 0. Thus the term -2(g /p0)G in (22) acts to decrease v’. The 
correlation @ also appears in the term --@S>n (19) where it causes p‘ to increase. 
Physically, vertical kinetic energy (VKE = $tw) is converted into potential energy 
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2.0 " " 1 " " 1 " " 1 " " 1 " "  

- -  0 Ri=O 0 -  
0 Ri = 0.075 0 
V Ri = 0.21 

1.5 A Ri = 0.37 

........... 
- --- - -- 

Ri = 1.0 - _._.- 

0.5 - 

I , , , , I , , ~ a I , ~ n ~ I , . ~ o  
0 2 4 6 8 10 

St 

FIGURE 1 .  Evolution of the simulated and experimental streamwise velocities. Symbols refer to 
the experiments of Rohr (1985). 

2.0 , , " I " ' I " ' ' " ' . ' ~ " . '  

- o R i = O  
0 Ri = 0.075 
V Ri = 0.21 -- A Ri = 0.37 

-.-.- Ri = 1.0 

.......... - --- 
1.5-  - 

FIGURE Evolution of the simulated and experimental vertical velocities. Syn-ols refer to the 
experiments of Rohr (1985). 

(PE = (-g/p,) (&)/Sp) as heavy parcels of fluid are lifted upward. (The downward 
motion of light fluid is equally likely.) 

The increase in p' with increasing Ri is shown in figure 3.  As Ri increases a given 
w induces a larger p since Sp increases. At  Ri = 1.0 and small St the VKE generates 
significant PE. However, the PE later decreases as it is converted back to VKE ; this 
is discussed below. A maximum Schmidt number (Sc = v / y )  of 2 could be specified 
in the simulations while maintaining resolution of the scalar dissipation scales. 
However, in the experiments Sc x 700. Despite the differences in PBclet number 
(Pe = ScRe) between the experimental and numerical flows, differences between the 
experimental and simulated values of p' which are evident at small St, tend to vanish 
at large St. This apparent PBclet-number independence suggests that at  the larger 
values of St in figure 3 the flow is being controlled by large-scale motion. However, 
at even larger values of St for the high Ri flows, when dissipation becomes important, 
the results should depend strongly on PBclet number. 

The development of the normalized vertical density flux, vp/v'p', is shown in 
figure 4. Since slow fluid is correlated with heavy fluid and fast fluid is correlated with 
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FIGURE 4. Evolution of the simulated and experimental vertical density fluxes. Symbols refer 
to the experiments of Rohr (1985). 

- 
light fluid (-Up > 0 ) ,  the behaviour of the normalized Reynolds stress, -uv/u'v', is 
similar to that of 7-'p/v'p' (see also 55.2). Figure 4 shows that for Ri < 1.0, 7-'p > 0 (and 
-uv > 0). As explained above these down-gradient (DG) fluxes result from the 
upward movement of slow, heavy fluid into faster, lighter ambient fluid or the 
downward movement of fast, light fluid into slower, heavier ambient fluid. The DG 
fluxes produce turbulent kinetic energy and scalar fluctuations (see (17) and (19)). 
However, the normalized DG fluxes decrease with increasing Ri. This is explained as 
follows. First, the decrease in v' with - increasing Ri suppresses turbulence production, 
B = -ES ,  through the term -vvS in (24). Secondly, as reflected in the term 
- (g/p,)@ in (24), the vertical transport of momentum ( -G > 0) also results in 
heavy fluid parcels being lifted against gravity, (gain of PE a t  expense of VKE) 
further weakening the production. Similarly, in the transport equation for @ (25) the 
increase in PE (the term - ( g / p , ) z )  occurs at the expense of VKE (the term -ESP).  
This energy conversion limits and, therefore, the production of scalar fluctuations. 

At Ri = 1.0 the vertical density flux reverses sign, becoming counter-gradient 
(CG). (We define the flux to be CG when it occurs against the mean density gradient.) 

- 
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The CG vertical density flux can be interpreted as a return of PE to VKE as heavy 
fluid parcels ( p  > 0) descend (w < 0) toward their neutrally buoyant positions (or as 
light fluid parcels ascend). This interpretation is valid provided the heavy fluid does 
not diffuse its density difference to its environment before descending, i.e. Xc must 
be sufficiently large. The descent of heavy fluid implies a descent of slow fluid 
( - u p  > 0) so that a CG vertical density flux (@ < 0) typically results in a CG 
momentum flux (-Uv < 0) and negative turbulence production. The decay of u' at 
large Ri is thereby enhanced. 

- 

5. Richardson number classification 
We turn now to the first stated objective of this paper, to describe the physics of 

stably stratified shear flow in terms of the primary dimensionless parameter, the 
Richardson number. Unless otherwise stated the results are obtained from the h 
series simulations which are summarized in table 1. 

5.1. The stationary Richardson number 
In $ 4  we showed that the growth rates of u' and v' decrease with increasing Ri.  In 
the present section we investigate this observation further. The temporal 
development of q2 is determined by production (P), buoyancy forces (B) ,  and 
dissipation ( E )  as shown in (17). We define the dimensionless growth rate parameter 

9-93 F = -  
E 

to represent the relative importance of these terms. The dimensionless growth rate 
of q2is then determined by- 

-F-1 -2 - 1 i Y q 2  
E at (39) 

As shown in figure 5(a),  F > 1 for small Ri and q2 grows, whereas at  large Ri,  
F < 1 and q2 decays. This suggests that there is a stationary Richardson number, Ri,, 
at which F x 1 and q2 is approximately constant in time. For the h series simulations 
shown in figure 5 ( a ) ,  Ri, = 0.088. Reported values of Ri, vary, from approximately 
0.21 in the experiments of Rohr (1985) to 0.1 in the simulations of Gerz et al. (1989). 
In our simulations Ri, varied from 0.058 to 0.21. 

The following dimensional analysis of the equation for q2 (equation (17)) shows 
that Ri, depends upon three parameters. Let L,  L,, qc, and pc be characteristic length 
and intensity scales for the velocity and scalar fields. The dimensionless form of (17) 
is then 

where w = q&/v. 

In  the above expressions Y is the ratio of the lengthscales of the velocity and scalar 
fields. The parameter 9' is a dimensionless shear rate, Llq, being a turbulence 
timescale. (If L is chosen to be q3/e  then 9 = S*.) Finally, 9$ is a Reynolds number. 

The relevance of these three parameters to the stationary condition may be seen 
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FIGURE 5. (a) Evolution of the growth rate parameter as a function of Richardson number. 
( b )  Evolution of the lengthscale ratio at Ri,. 

by considering the fact that a t  Ri = Ri, the dimensionless growth rate is zero. 
Equation (40) then indicates that 

Ri, = f(3, Y",). (42) 

Rogers et al. (1986) and Shirani, Ferziger & Reynolds (1981) both found a weak 
dependence of 3 upon the Prandtl number at  Ri = 0. Thus, L, is proportional to L,  
which means that the lengthscales of the scalar field are controlled by the velocity 
field. This implies that Ri, may be only weakly dependent upon 2 and therefore the 
Prandtl (or Schmidt) number, a result which is confirmed in figure 5 ( b )  (see 56.2). 

Now consider the case of low shear rate found in both the experiments of Rohr 
(1985) and the present simulations. For a given 9, (42) suggests that Ri, depends 
upon 9. The simulation results presented in figure 6 illustrate that Ri, increases with 
increasing integral scale Reynolds number, ReAl,:l = qAl l ;  J v  (where the Reynolds 
number is defined based on final lengthscales). This is because as Re,,l;l increases, the 
separation between the largest lengthscales and the smallest lengthscales increases 
and viscous effects become less important in controlling the growth of q2. Increased 
stratification (larger Ri,) is therefore required to suppress 9 and control the growth 
of q 2 .  



0.25-  

o.20 

0.15 

Ri, 

0.10 

0.05 

0.4 

I 1 ,  1 8  r I n  0 1 I r - 8  1 0  r 8 4  - 
- run la 
- + run hd 

run xb 
- A run ya 
1 v run rc - A - 
- - I - - - - - 
- - 

s* = sq*/€ = I 1  - - 
~ " ~ ' ~ " " ~ " " ' " " ~ " "  

0.3 

- 1 ' " ' 1 " " 1 " " I ' " ' I " "  - Ri, = 0.058 
--- Ri, = 0.088 

-.-.- Ri, = 0.15 
-- Ri, = 0.21 

.......... Ri,=0.113 - 

- 

........................................ 
-----,-------,~ - 

l , , , , l , ,  I , I , , ,  I 1 1  1 a . I n  I I 1  

B 0.2 

0.1 

0 

FIGURE 7. Evolution of the ratio of buoyancy and production at Ri,. 

The parameter F can also be written 

F = 8 (1 - g). (43) 

Consistent with the argument made above, as Re,,ll,l increases, 9'/e increases and a 
larger 9819 is required to maintain F x 1. Indeed, a t  Ri, the ratio L%/8 increases 
from approximately 0.07 to 0.22 with increasing Re,,,, , (see figure 7) .  The buoyancy 
term is, therefore, a relatively small part of the energy budget a t  the stationary 
condition. Thus, stratification does not directly reduce the growth of q2 (i.e. is not a 
kinetic energy sink). Rather, F x S /B  and the role of stratification is indirect via the 
suppression of 8. This can be seen by examining (21)-(26) which show the complex 
interaction between the various buoyancy and shear (turbulence production) terms 
in the transport equations. 

At large Reynolds number Ri, seems to approach the critical Richardson number 
(0.25) predicted by the inviscid linear stability analysis of Taylor (see Miles 1961). 
This is interesting but will not be pursued in detail since the assumptions of the 
analysis (inviscid linearity) are not satisfied in the simulations. As will be discussed 
below, a finite dissipation rate is necessary for maintaining stationarity. Also, 
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significant nonlinearity is present in the simulations. The degree of nonlinearity may 
be measured by the ratio Sh/q where h = (5q2v/s):  - (Other measures of 
linearity are S* and 8Al l ; l /q . )  If Sh/q >> 1 the mean shear-turbulence interactions 
dominate the nonlinear turbulence-turbulence interactions. However, in the 
simulations SA/q x 1.4. 

We remark that a t  a large dimensionless shear rate the effects of viscosity and 
nonlinear interactions are minimal, see Holt (1990). This precludes the identification 
of a stationary Richardson number. Instead, one can only identify a sufficient 
condition for lack of growth in q2.  

At Ri = Ri,, q2 is nearly constant in time. However, the radial energy spectra, 
E(K)  = L$(((K), at Ri, reveal that the lowest wavenumber modes gain energy while 
the highest wavenumber modes lose energy so that the spectra are not stationary. 
Energy spectra at Ri, = 0.088 will be presented to demonstrate this point. First, E ,  
is dominated by the streamwise velocity (%/q2 x 0.63). Thus, the spectra E,, shown 
in figure 8 illustrate the spectral evolution at Ri,. The spanwise velocity spectra 
( E / q 2  z 0.25) behave similarly. The low-wavenumber modes of the vertical velocity 
spectra (vV/q2 x 0.12) are, however, more stationary in time (figure 9). The scalar 
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spectrum, Epp, evolves similarly to E,,, as the scalar dynamics are driven by the 
velocity field. In  contrast to the spectral behaviour at Ri,, at Ri = 0 all scales gain 
energy and the spectra become more broad banded (see figure 10) while at Ri = 0.5 
almost all scales lose energy (figure 11). 

The spectral evolution can be explained physically as follows. At Ri = 0 significant 
production of turbulent kinetic energy occurs in the most energetic modes. Some of 
this energy is then transferred to higher wavenumbers. At Ri = Ri, the production 
is reduced and less energy is transferred. Consequently, dissipation processes 
dominate at the higher wavenumbers and these scales lose energy. This physical 
- picture applies directly to E,, as the production appears in the equation governing 
uu, whereas the pressurestrain redistribution of energy results in a similar evolution 
of E,, and Bww. 

The physical interpretation of the spectral evolution assumes that production and 
spectral energy transfer are reduced at Ri,. At Ri = 0 the radial co-spectrum E,, 
shows that production (P=uVS)  increases in time at the most energetic 
wavenumbers (see figure 12). A t  Ri,, 9' is indeed weaker since the co-spectra are now 
stationary at  the most energetic wavenumbers and decreasing at larger wave- 
numbers (see figure 13, also note scale change from figure 12). 
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To examine the nonlinear energy transfer we present the radial transfer spectra of 
the streamwise energy, Nuu, in figure 14. (Xuu is part of the tensor, N,, representing 
the nonlinear transfer of energy between wavenumber components of the energy 
spectrum. In isotropic turbulence, for example, all components of Ntj  are negative a t  
low wavenumbers and positive a t  high wavenumbers because the energetic large 
scales transfer energy to the smaller scales.) The transfer spectra have been 
normalized by the Kolmogorov velocity, V ,  = ( E V ) ; .  to facilitate comparison over a 
range of Ri. From figure 14 it is clear that stratification reduces spectral transfer as 
assumed above. That is, the transfer from the energetic large scales to the smaller 
scale motions is reduced. The transfer spectra are also shifted to larger wavenumbers 
a t  Ri = Ri,. This may be due to  the suppression of production a t  the lower 
wavenumbcrs as cxplained previously. Furthermore, the near two-dimensionality of 
the velocity field (&/q' +G/q2 z 0.88) implies reduced transfer, presumably 
through reduced vortex stretching. However, figure 14 does not exhibit the 
characteristic inverse energy cascade of strictly two-dimensional (unsheared) 
turbulence (see Itsweire & Helland 1989). An explanation as to  why the flow does not 
exhibit the characteristics of two-dimensional turbulence has been proposed by 
Mktais & Herring (1989). They suggest that a t  large Ri the flow is mainly in 
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horizontal layers, but unlike pure two-dimensional turbulence the vertical variability 
of the turbulence is important. This implies that horizontal vorticity and small-scale 
energy may be generated by vertical shear due to friction between the layers. 

An alternative way of describing the effects of stratification on energy transfer 
(see, for example, Gerz & Schumann 1991) is that with stable stratification the 
largest, energy-containing, eddies do not grow as much as they would in the absence 
of buoyancy. The spectral transfer of energy is not done at  the largest scales but 
rather by eddies which are not yet influenced by buoyancy. This viewpoint originates 
from the idea that turbulent scales are only influenced by buoyancy when their scale 
is about equal to the Ozmidov scale. It does not, however, explain why all scales 
of motion are affected by buoyancy at  large Ri (see figure 11, for example), an 
effect which is accounted for by examining the influence of stratification on the 
production process itself. We close this section with two additional comments. First, 
the Kolmogorov scaled energy spectra, Bm(LkK)/VE L, where L, = (v3/e)’, exhibit 
small-scale collapse as expected. Secondly, since the stratified shear flow is 
anisotropic it is of interest to inspect the one-dimensional spectra, E&). The 
behaviour of these one-dimensional spectra is consistent with the radial spectra at all 
simulated Ri. (See Holt (1990) for a discussion of these points.) 

5.2. The transition Richardson number 
Although Ri, marks the boundary between growth and decay of q2, counter-gradient 
(CG) fluxes are found only at  much larger Ri. This is illustrated in figure 15 which 
shows the evolution of the normalized vertical density flux @/v’pf. At Ri, = 0.088 
the normalized flux evolves in much the same way as the passive scalar case. The CG 
flux appears only at Ri = 0.5 and 1.0. In these cases G / v f p f  evolves very differently, 
exhibiting oscillations which modulate the small negative mean correlations. 

The differences in the temporal development of 2)PIv’p’ allow us to partition the 
results into two regimes separated by Ri = 0.25, - at which F/v’p’ approaches zero for 
large St.  The normalized Reynolds stress, -uv/u’v‘, behaves similarly (see figure 16) 
since slow fluid is correlated with heavy fluid and fast fluid is correlated with light 
fluid, i.e. -G/u‘p‘ x 0.7 as shown in figure 17. Hence, -uv/u‘v‘+O a t  Ri = 0.25. 
On the basis of these observations we define the transition Richardson number, Ri,, 
as the Richardson number at  which the fluxes $/v fp f  and U2)lu’v’ approach zero at 

- 
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FIGURE 16. Evolution of the Reynolds stress as a function of Richardson number. 

large St.  This criterion is equivalent to those of maximum energy partition and 
maximum anisotropy as will be shown below. 

The physical significance of Ri, is that  this Richardson number signals a change 
from shear driven turbulence to buoyancy dominated turbulence. In the h series 
simulations discussed above Ri, x 0.25. The correspondence of Ri, x 0.25 with the 
critical Richardson number for inviscid stability is coincidental and will be explained 
as a Reynolds number effect in 3 5.3. 

When comparing the results in figures 15-17 with the equivalent figures in Gerz 
et al. (1989) and Gerz & Schumann (1991) the following trends are apparent. All three 
sets of simulations are in good agreement for &/u'v' and @/u'p' (the magnitude of 
these quantities predicted by Gerz simulations is slightly lower) but the simulations 
of Gerz et al. (1989) are significantly different from those of Gerz & Schumann (1991) 
and these simulations when considering the @/v'p' quantity. Not only are the 
magnitudes of this correlation much lower in the Gerz et al. simulations but the time 
to  zero crossing for the Ri = 0.5 and 1.0 cases predicted by their simulations is much 
shorter. It is distinctly possible that the initial differences in this correlation are due 
to the fact that T~ is equal to  0 for the results of Gerz & Schumann and those shown 
in figure 15, whereas the corresponding value in the simulations of Gerz et al. is 1. 
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FIGURE 18. Evolution of the energy partition as a function of Richardson number. 

However, as shown in figures 28 and 29 (see 36) the fluxes become independent of T,, 
a t  later times in the simulation. The difference at later times, then, is probably due 
to Prandtl number effects: Gerz et al. used a Pr of 5.0 in their simulations as 
compared to the value of 1.0 in our simulations and those of Gerz & Schumann. For 
example, in figure 31 it can be seen when Pr (or Sc)  is increased for Ri = 0.5 in our 
simulations the time to zero crossing decreases and agreement with Gerz et al.'s 
results improves. The Re effects on the fluxes shown in figures 15-17, especially at 
larger times, appear to be minimal. For example if we compare the results shown in 
figure 4 (high Re, table 5) with those in figure 15 (lower Re, table 1) we see that not 
only are the magnitudes of the fluxes very similar a t  larger values of St for all Ri, but 
the time to zero-crossing for the Ri = 1 case is identical in both figures. 

Since the vertical density flux reflects the exchange of energy between PE and 
VKE it is of interest to  investigate the ratio of these two forms of energy as a function 
of Ri. (Note that in this context the potential energy we refer to is the available 
potential energy.) As shown in figure 18, the energy partition, 7 = PE/VKE, 
approaches a constant at large St for fixed Ri. (There is some uncertainty in the 
asymptotic behaviour of 7 at Ri = 0.25 owing to the limited St attainable in the 
simulations.) In  the case of DG fluxes (Ri < Rit),  VKE is gained indirectly from 
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production through pressure-strain redistribution. This VKE is converted to 
PE, some of which is dissipated and 7 becomes constant. I n  the case of CG fluxes 
(Ri > Ri,), the PE gained while the vertical density flux is DG is later converted back 
to  VKE with the appearance of the CG vertical density flux. Some of this VKE is then 
dissipated or redistributed to & and 7 again becomes constant. Note that the 
condition of constant 7 occurs independently of how the constituent energies evolve. 
For Ri < Ri, both forms of energy grow whereas for Ri > Ri, both forms decay. 

As shown in figure 19, 7 increases with increasing Ri, up to  Ri, = 0.25, then 
decreases slightly. For increasing Ri < Ri, the decreasing amount of VKE produces 
increasing levels of PE. Evidently, in a more strongly stratified flow a given results 
in a larger @. This efficient production of PE also occurs a t  Ri > Ri, as long as 
vpp/v'p' > 0. However, the production of PE ceases when the flux reversal occurs and 
buoyancy forces reconvert PE to VKE. As Ri increases the flux reversal occurs earlier 
and the asymptotic value of 7 decreases slightly. 

The CG fluxes also affect the distribution of turbulent kinetic energy among the 
three velocity components. To investigate this the ratio uulvv is shown as a function 
of time in figure 20. At Ri = 0, & is greater than % owing to the direct effect of 

- 

_ _  
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production on &. As Ri increases in the range 0 < Ri < Ri,, the anisotropy increases. 
Although both and Vv decrease owing to the suppression of production, the 
conversion of VKB to  PE further decreases G. For Ri > Ri, the anisotropy decreases 
with increasing Ri, where the CG vertical density flux signals a return of PE to VKE 
(thus incrcasing Vv) and the associated reversal in production reduces %. 

Figure 20 also reveals a weak tendency toward isotropy a t  large St in the Ri = 0 
case. This is presumably a consequence of increasing Reynolds number. Rogers et al. 
(1986) also found increased isotropy in successive simulations of increasing Re a t  
Ri = 0. These results are not surprising since more of the scales contributing to 
uulvv should be isotropic a t  larger Re. The implication is that part of the increase 
in anisotropy with increasing Ri < Ri, in figure 20 is due to a decrease in Re (for 
fixed initial conditions). However, the decrease in anisotropy for Ri > Ri, a t  even 
lower Re is a genuinc effect of stratification. 

_ _  

5.3. Behaviour at large Richardson number 
5.3.1. Brunt-Vaisala frequency scaling 

I n  the definition Ri = N 2 / S 2  both the BV frequency and the mean shear rate have 
dimensions of t - l .  This suggests a multiple mean timescale problem. At large Ri, N 
should be the more important timescale so we now consider the behaviour of the 
normalized fluxes as functions of Nt a t  large Ri. 

In  figure 21, FpIv'p' is shown as a function of Nt for several Ri and Reynolds 
numbers. For Ri = 1.0 the zero crossing occurs at Nt x 2.4 and is nearly independent 
of Re. The time to zero crossing of ?-'p/v'p' according to the inviscid rapid distortion 
analysis of Hunt et al. (1988) is Nt = 2.0, whereas in the unsheared, stratified flow 
studies of Riley et al. (1981) and Itsweire et al. (1986), the first zero crossing occurs 
at Ni! x 3.0. In  the simulations of Riley et al. (1981) and the unsheared linear theory 
of Hunt et al. (1988) the vertical density flux oscillates about zero a t  approximately 
half the BV period. In  thc present study the temporal mean of GIv'p' a t  Ri = 1.0 is 
slightly negative after thc first zero crossing, signalling a net conversion of PE to  
VKE. However, this mean valuc is modulated by oscillations at approximately the 
same period found in the urisheared studics. In  the high-Reynolds-number y and r 
series simulations a t  Ri = 1.0 the oscillatory modulations arc sufficiently large to 
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FIGURE 22. Evolution of the Reynolds stress a t  large Richardson number. 

cause two zero crossings and therefore a temporal reversal in the exchange of PE and 
VKE . 

Figure 21 also illustrates that in the large-Reynolds-number y series simulation 
at  Ri = 0.5, $/v'p' approaches zero but does not become CG. This suggests that 
Ri, x 0.5 in these larger Re runs. Apparently, Ri, increases with increasing Re. The 
existence of flux reversals a t  Ri = 1.0 in the largest Reynolds number r series 
simulations (where Ri, x 0.21) further suggests that the upper bound on Ri, may be 
1.0. 

As shown in figure 22, the initial peak in -uv/u'v' occurs at Nt x 1.2-1.5, 
independent of Ri and Re. The peak in PE also occurs a t  Nt x 1.5 and is fairly 
independent of Ri and Re. This suggests a characteristic time to the onset of the 
effects of stable stratification. The rapid distortion analysis of Hunt et al. (1988) 
predicts a characteristic time of Nt = 1.0 whereas the unsheared experiments of 
Itsweire et al. (1986) give Nt x 1.7. 

5.3.2. Small-scale $ux reversals 

The temporal reversals in the globally averaged fluxes z)p/v'p' and -uv/u'v' are 
also evident in the co-spectra of figures 23 and 24. Initially, the most energetic modes 
are DG but later they exhibit a reversal. In contrast, the higher-wavenumber modes 
are persistently CG. (The temporal decrease in the absolute value of the flux at each 
wavenumber is due to the flow becoming less energetic. This effect can be partly 
compensated for by small-scale normalization, see Holt 1990.) 

The persistent CG flux at  large wavenumbers is probably a Reynolds-number 
effect. According to the Kolmogorov hypotheses the small-scale motions are isotropic 
at large Re so that the co-spectra at large wavenumbers should be zero. Experimental 
studies support the argument that the persistent CG flux is an Re effect. The 
unsheared air-flow studies of Lienhard & Van Atta (1990) and Yoon & Warhaft 
(1990) show no small-scale reversal. The shear-flow results of Rohr et al. (19883) and 
the unsheared data of Itsweire & Helland (1989) both show inconclusive evidence of 
the small-scale reversal. In any case the magnitude of the reversal is insignificant at  
the Reynolds numbers of the latter experiments. See also Gerz et al. (1989) who 
present an alternative argument for the Reynolds-number dependence of the small- 
scale reversals in terms of dissipation rates. 

- 
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FIGURE 23. The radial co-spectra of the vertical density flux at Ri = 0.5. 
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FIGURE 24. The radial co-spectra of the Reynolds stress at Ri = 0.5. 

Even if the small-scale reversal is limited to low Reynolds numbers the effects are 
apparently not significant. If they were, the globally averaged fluxes would change 
sign earlier in the smaller Re cases. However, this effect was not conclusively 
observed in 55.3.1. In addition, the time to reversal, Nt x 2.4, reported here is 
slightly greater than the Nt = 2 predicted by inviscid rapid distortion analysis (Hunt 
et al. 1988) in which there are no small scale reversals (Holt 1990). 

5.3.3. Turbulence or internal waves Z 
The transfer spectra presented in 55.1 showed that for large Ri the spectral 

transfer is essentially zero (see figure 14). Two interpretations may be drawn from 
this result. The first is that at large Ri the flowfield possibly consists primarily of 
linear internal waves and the second is that the flow field consists of linear buoyancy- 
driven motions. Let us treat each possibility in turn. 

As pointed out by Stewart (1969), @ = 0 in a linear internal wave field. In the 
unsheared experiments of Stillinger et al. (1983), z)p/v'p' vanished, which led those 
investigators to conclude that internal waves were present. (However, z)p = 0 is not 
a sufficient condition for the existence of internal waves.) In our large Ri simulation 
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results, G/v 'p '  is nearly zero, although very weakly negative when averaged over the 
whole simulation. 

Komori et al. (1983) studied the phase relationship between the vertical velocity 
and temperature in a stably stratified channel flow. Their results supported the 
existence of a large scale CG vertical heat flux superposed on an internal wave field. 
However in their study of thermally stratified unsheared turbulence Lienhard & Van 
Atta (1990) showed that the phase correlations were not consistent with the existence 
of internal waves even though z 0. In addition: their success in collapsing their 
spectra using Kolmogorov scaling certainly brings into question the use of = 0 as 
a criterion for inferring (linear) internal waves. 

The phase correlations between the vertical velocity and the density, O,, in the 
present simulations at  St = 12 are shown in figure 25. A t  Ri, = 0.088,0vp z 0 a t  the 
most energetic wavenumber. Thus, v and p are in phase, consistent with the shear 
driven DG vertical density flux. At larger wavenumbers v and p are k180" out 
of phase, owing to  small-scale flux reversals (see also 97). At large Ri = 0.5, 
O,, x 180" at nearly all wavenumbers, Consistent with the buoyancy-driven CG 
vertical density flux. Thus, the phase relations shown in figure 25 lead us to  the 
second interpretation implied by reduced transfer, that at large Ri the flow consists 
mainly of linear buoyancy-driven motions. A t  large Ri only the lowest wavenumbers 
exhibit O,, z k go", suggestive of large-scale internal waves. Further investigations 
including conditional sampling (Komori et al. 1983) may provide more conclusive 
evidence of internal waves. 

The transition from shear-driven DG fluxes to buoyancy-driven CG motions is also 
apparent in the instantaneous density profiles. A DG vertical density flux is caused 
by the lifting (descent) of heavy (light) fluid into lighter (heavier) fluid. The flux may 
also be sufficiently strong to produce a local instability in the total density 
(p = po + S,, y + p)  profile. An instability is a region in which heavy fluid overlies light 
fluid, i.e. splay > 0. Such an instability oflers subst(antia1 opportunity for turbulent 
mixing. (Hcre, mixing is the reduction of local density gradients.) I n  contrast, a 
weaker flux produces smaller local density gradients which will be reduced primarily 
ihrough molecular diffusion. 

The total density profiles were inspected for instabilities over a range of Ri. One 
such profile a t  Ri, = 0.088 and St = 12 is shown in figure 26 wherein instabilities of 
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FIGURE 27. Evolution of the instability percentage as a function of Richardson number. 

varying scale are evident. The profile also contains several statically stable deviations 
from the mean density. 

The percentage of instabilities, Y, within the entire database at  a fixed Ri and St 
was then computed. This was accomplished by dividing the total number of 
instabilities found in all profiles by the total number of stability tests. (A test was 
conducted between all pairs of neighbouring grid points in each profile.) Note that Y 
does not accurately measure the percentage of turbulent events that produce 
instabilities, as one large-scale event may contain or produce several smaller-scale 
instabilities (see figure 26). Nonetheless, Y is the fraction of the flow field that is 
statically unstable. 

As shown in figure 27, Y decreases with increasing Ri. This result may be 
interpreted as follows. For Ri < Ri, the reduction in instabilities is due to the 
suppression of turbulence production which results in less intense DG vertical 
density fluxes. For Ri > Ri, the number of instabilities rapidly approaches zero. By 
synthesizing the latter observation with those obtained from the phase correlations 
we postulate that at large Ri the flowfield consists mainly of low intensity buoyancy 
driven motions that are incapable of producing instabilities and, possibly, large scale 
internal waves that do not break. 
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6. Effects of other parameters 
In  previous sections we characterized the flow in terms of the Richardson and 

Reynolds numbers. I n  this section we discuss the effects of two other dimensionless 
parameters : the initial energy partition and the Schmidt (Prandtl) number. 

6.1. Initial energy partition variation 
The amount of potential energy will differ in turbulence generated by shear 
instability compared to that generated by density instability. It is therefore 
important to understand the effects of varying qo, the initial ratio of PE to VKE. 

I n  their linearized analysis of unsheared stratified turbulence Hunt et al. (1988) 
found that when qo was increased from 0 to 1 the amplitudes of the oscillations in the 
VKE, the PE, and @ were approximately 30% of those in the q,, = 0 case. However, 
Gerz & Schumann (1989) found that in the presence of shear the asymptotic values 
of -%/v’v’ and ZITIv’T’ were not significantly affected as qo was increased from 0 to  
0.5 at  Ri = 1.0. This insensitivity is not too surprising since Gerz & Schumann (1989) 
varied qo over a smaller range than used in this study. 

In  our study qo was prescribed as follows. From our simulation results with 
qo = 0 we noted the asymptotic value, qa, of the energy ratio as a function of Ri. 
Then we repeated the simulations with qo = 2q0. Specifically, the h series simulation 
results (qo = 0) at  Ri, = 0.088 and Ri = 0.5 were compared to the e series simulation 
results a t  Ri = 0.088 with qo = 2, and at  Ri = 0.5 with yo = 7. 

The disadvantage of this approach is that the total initial energy, E, = hi (1  +bo), 
increases as qo increases. We could overcome this problem by fixing E,. However, the 
necessary change in q2 would introduce Reynolds-number and dimensionless-shear- 
rate effects. 

We will show that in both the shear-driven case (Ri = 0.088) and the buoyancy- 
dominated case (Ri = 0.5) the qualitative behaviour of the developed flow is not 
significantly changed by the variation in qo. However, the paths by which the flows 
develop exhibit differences. 

At Ri = 0.088 the parameter F = (9 - g ) / e  was approximately 7 9’0 larger 
throughout the simulation when qo was increased from 0 to 2. Given that Ri, 
corresponds to F x 1 this implies that Ri, is slightly greater than 0.088 when 
qo = 2. Thus, we expect to have a larger Reynolds number. Indeed, for 
St > 5 the component kinetic energies, $xu,, are approximately 20% larger in the 
qo = 2 case. This may be explained as follows. 

When qo = 0 significant VKE is expended to create PE a t  small St. Also, some of 
the streamwise kinetic energy gained through production is distributed to VKE and, 
in turn, maintains the conversion of VKE to PE. When qo = 2 significant initial PE 
already exists and, as a result, the energy in the velocity field is retained. Hence, the 
20 % increase in $xu,. A 20-30 YO increase in the component kinetic energies was also 
observed in the unsheared results of Hunt et al. (1988) when qo was increased from 
0 to  1.  

At Ri = 0.088 and St > 5 the qualitative behaviour of q is relatively independent 
of qo (see figure 28). However, qa is slightly smaller with increased qo. The reduction 
in qa is consistent with the tendency for qa to decrease with decreasing Ri, for 
Ri c Ri, (refer to figure 19). The more energetic case of qo = 2 has a lower effective 
Ri and so exhibits a lower la. 

In  55.2 we also showed that at Ri, = 0.088 and qo = 0 the vertical density flux is 
DG for all St. However, when qo = 2 the flux is weakly CG a t  small St (see figure 29). 
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FIGURE 28. Evolution of the energy partition as a function of its initial value. 
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FIGURE 29. Evolution of the vertical density flux as a function of the initial energy partition. 

In this case, vo > qa and some of the excess initial PE is converted to VKE to resolve 
the initial imbalance in 7. This energy conversion causes the transient CG flux. 
Thereafter, 2)p/dpr develops essentially as in the yo = 0 case. The Reynolds stress is, 
however, DG for all time when vo = 2. In this case, -up/u'p' is reduced at small St, 
so the energy conversion that creates the CG vertical density flux does not affect the 
Reynolds stress. 

We now consider the effect of q0 upon the buoyancy-dominated (Ri > Ri,) case. 
An increase in yo at Ri  = 0.5 results in effects similar to those observed at  Ri = 0.088. 
For example, when yo is increased from 0 to 7 the developed flow is more energetic ; 
both the component kinetic energies and the PE increase. The initial imbalance in q 
again results in a transient CG vertical density flux at  small St (figure 29) and a 
reduction in -@/u'p'. The significant initial conversion of PE to VKE at vo = 7 also 
results in a smaller 7 at intermediate times, although 7a is essentially unaffected 
(figure 28). 

The increase in to at Ri = 0.5 also delays the time to the second CG flux (see figure 
29). This is consistent with the proposition that Ri, increases with increasing 
Reynolds number. Presumably, at sufficiently large q,, the flux reversal would not 

- 
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FIGURE 30. Evolution of the Reynolds stress as a function of the Schmidt number. 

occur at Ri = 0.5 and, by definition, Ri, x 0.5. The flow would also be more energetic, 
i.e. of larger Re than the case of yo = 0 where Ri, = 0.25 (see $5.2). 

6.2. Schmidt (Prandtl) number variation 
The range of Prandtl and Schmidt numbers found in the oceans, the atmosphere, and 
fresh-water bodies cause the dissipation of the various scalars to behave differently 
and may affect the vertical fluxes. In this section we investigate the effects of 
Sc variation. Specifically, in the shear-dominated case of Ri, = 0.088 we discuss 
the effects of increasing S c  from 1.0 to 2.0, and in the buoyancy dominated case of 
Ri = 0.5 we examine the effects of increasing Sc from 0.1, to 0.5, 1.0, 2.0, and 4.0. 
Specification of a larger Sc is precluded by the requirement of adequate resolution of 
the scalar dissipation. However, the limited attainable Sc allows us to study the 
qualitative effects of this parameter. 

At Ri, = 0.088 the increase in S c  from 1.0 to 2.0 causes a 2 %  decrease in 
F = ( S - g ) / e .  Although the range of Sc studied here is rather small we can infer that 
F and thus Ri, may be insensitive to Sc (for Sc 2 1). This is expected since F x 9 / e  
and S / e  is primarily determined by the velocity field. Indeed, a t  Ri, = 0.088 the 
normalized Reynolds stress is essentially unchanged by the increase in Sc (see figure 
30). Furthermore, in the analysis of $5.1 we explained how 2' and thus Sc do not 
affect Ri, significantly. 

The slight decrease in F with increasing Sc a t  Ri, may be explained as follows. A 
DG Reynolds stress event not only exchanges momentum but also lifts heavy fluid 
into lighter ambient fluid (or vice versa). During this process the scalar diffusion may 
reduce the buoyancy of the fluid parcel. As Sc increases the scalar diffusion decreases 
and the parcel remains strongly buoyant, effectively increasing the influence of 
stratification and weakening the scalar production event. This argument is supported 
by the fact that a t  Ri, = 0.088, G/v 'p '  decreases with increasing Sc (figure 31); 
similar changes in GIv'p' occur as the strength of the stratification, or Ri, 
increases at fixed Sc  and Ri < Ri, (see $5.2). 

We now consider the effect of increasing Sc upon the buoyancy dominated case 
(Ri > RiJ. At Ri = 0.5 the normalized CG vertical density flux becomes stronger as 
Sc increases from 0.5 to 4.0 (see figure 31). The time to the flux reversal also decreases 
with increasing Sc. These effects may be explained as follows. As Sc increases the 
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FiCunE 31. Evolution of the vertical density flux as a function of the Schmidt number. 
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FmunE 32. Evolution of b,, and b,, as a function of the Schmidt number a t  Ri = 0.5. 

buoyant fluid parcels retain their density deviations longer and are more strongly 
affected by gravity, which returns the fluid parcel to a neutrally buoyant position. 
For Sc = 0.1, the density of the fluid parcels is so strongly diffused that no CG flux 
occurs. 

The effects of Sc on z)p/v’p’ imply that Ri, increases with decreasing Sc. Recall from 
$5.2 that Ri, is defined, in part, by the condition of zero @/v’p’ at large St. At 
Sc x 0.1 we find that Ri, x 0.5 whereas Ri, x 0.25 at Sc = 1 (see 55.2) .  The effect 
of Sc variation upon Ri, is expected to decrease with increasing Reynolds number. 

The Reynolds stress behaviour at  AS’C = 0.1 (figure 30) is similar to that of GIv’p’ 
despite the fact that the correlation, GIu’p ’ ,  between light and fast fluid (or slow and 
heavy fluid) is relatively low a t  this Sc. In contrast to the behaviour of 2)PIv‘p‘ the 
time to the Reynolds stress reversal increases with increasing Sc and the subsequent 
CG Reynolds stress is weaker. Although u and p remain strongly correlated as Sc 
increases, differences in the behaviour of GIu’v’ and z)p/v’p’ exist. Differences in the 
pressure-strain and pressurdensity gradient mechanisms and the respective 
dissipation rates may be relevant in this regard. 
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FIGURE 33. Side view of a DG Reynolds stress (-uv > 0) event at Ri, = 0.088 and St = 12. 

The effects of Sc on the anisotropy in the velocity field are reflected by the tensor 

R.. b . .  = 23-18 3 ij‘ 

R k k  
(44) 

As shown in figure 32 the anistropy decreases (decreasing b,, and Jb,,l) with increasing 
Sc. Essentially the same trends and magnitudes were obtained by Gerz et al. (1989) 
for b,, and b2,. The agreement between their results and ours is good over a range of 
Ri from 0 to 1. As Sc increases the increasingly buoyant fluid parcels return more PE 
to VKE and lbz21 decreases, as does b,, since b,, = 0. This is consistent with the 
behaviour of .‘p/v’p’ in figure 31 where, at larger Sc, the CG flux occurs earlier and 
is stronger, reflecting the return of more PE to VKE. The CG Reynolds stress also 
decreases b,, since the production becomes negative. Although the (normalized) CG 
Reynolds stress becomes weaker as Sc increases (figure 30), in the present buoyancy- 
dominated case this effect is not significant enough to increase b,,. 

7. Coherent structure 
Our goal in this section is to describe, in terms of coherent vorticity, the dynamics 

of the local DG and CG fluxes. These fluxes, in turn, determine the behaviour of the 
averaged fluxes described in previous sections. 

7.1.  Structure at small Richardson number 
We first describe the structure in the shear dominated (Ri < Ri,) case. A side view of 
contour surfaces of DG Reynolds stress (-uz, > 0) in the h series simulation a t  
Ri, = 0.088 and St = 12 is shown in figure 33. Only the most intense flux in the 
sampling volume is shown. Owing to the correlation of light fluid with fast fluid and 
heavy fluid with slow fluid (see $5.2) the contour surfaces of vp resemble those of uv. 
Inspection of the velocity and density contours in this region shows that these fluxes 
are composed of light ( p  < 0 ) ,  fast (u > 0) fluid moving downward (w < 0) into slow, 
heavy fluid. 

To investigate coherent vorticity in the neighbourhood of these fluxes, vorticity 
line tracings were initiated near the fluxes. These vortex lines are simply trajectories, 
r i (s ) ,  with slope, dri/ds, parallel to the local fluctuating vorticity vector, wl. As shown 
in figure 34 the coherent vorticity lines resemble a hairpin. The head is located a t  the 
upper left with the two legs branching off the head. In this example the legs are 
connected at the lower right by extremely weak vorticity. The vorticity direction 
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FIGURE 34. Side view of the vorticity lines in vicinity of the flux of figure 33. 
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FIGURE 35. Velocity vectors in the mid-plane of the structure of figure 34. 

along the right-hand leg is toward the head and away from the head along the 
opposite leg. The associated fluid motion can be inferred from the left-hand rule 
(where the thumb of the left hand is aligned with the vorticity and the fingers are 
curled in the direction of the fluid velocity). The fluid motion so determined implies 
that fluid is pumped (Rogers et al. 1986) downward through the centre of the hairpin : 
light, fast fluid from above the hairpin is moved downward into ambient slow, heavy 
fluid, resulting in the DG fluxes. 

Hunt (1978) explained that a spanwise vortex element which is perturbed into the 
direction of expansive strain (see $2.3) may be stretched into a hairpin shape. As 
shown in figure 34 the legs of the hairpin are inclined approximately 45' to the 
horizontal ; this is consistent with the direction of expansive strain. As discussed by 
Rogers et al. (1986), the inclination angle can be reduced by the mean rotation and 
in some cases may be approximately 20". The side view in figure 34 also provides a 
sense of scale of the hairpin; the vertical and streamwise dimensions of the 
computational domain are approximately 5 and 10 units. 

By comparing figures 33 and 34 we see that the DG flux resides just below and 
downstream of the head and the upper regions of the legs. This is consistent with the 
pumping mechanism explained above. Indeed, the velocity field in a vertical (z, y)- 
plane passed between the legs of the hairpin (figure 35) clearly shows that fluid is 
moving downward through the hairpin. 

We can further investigate the hairpin structure by projecting the fields onto 
planes. Since the hairpins are thought to evolve from the expansive straining of 
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FIGURE 36. Vorticity vectors projected onto a plane inclined 28.6" from the horizontal at 
Ri, = 0.088 and St = 12. 

FIGURE 37. Contours of the Reynolds stress in the plane of figure 36. Solid (dotted) contours 
correspond to  DG (CG) fluxes. Dashed lines are from figure 36. 

vortex elements i t  is of interest to calculate the inclination angle, 0, of the vorticity 
vectors from the horizontal (Moin & Kim 1985). At Ri = 0 and Ri, = 0.088 intense 
vorticity is typically inclined at 0 20°40" and, of course, a t  180O-8 (Holt 1990). 
This suggests that the vorticity field may be accurately depicted by projection onto 
a plane inclined 26.6' (a computationally convenient value) from the horizontal. 

The projection shown in figure 36 at  Ri = 0.088 and St = 12 reveals several hairpin 
structures with heads a t  either the upstream or downstream ends. Similar results 
have been obtained by Rogers et al. (1986) and Gerz (1989). As expected, the hairpins 
of figure 36 correlate with DG Reynolds stresses (figure 37) and vertical density 
fluxes. 

At both Ri = 0 and Ri = Ri, regions of instantaneous CG Reynolds stress and 
vertical density flux can be identified (see figure 37 for example). At Ri = 0 the CG 
fluxes must be due to the local turbulence, and not buoyancy forces. When a fast 
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FIGURE 38. Side view of a CG vertical density flux (up < 0) at Ri = 0.5 and St = 12. 

(slow) fluid parcel is pumped downward between the legs of a hairpin, part of the 
parcel may be caught in the vortex motion of one leg and returned toward fast (slow) 
fluid, resulting in a local CG flux. Indeed, CG regions are observed outside the legs, 
as well as outside the heads. These small scale CG fluxes become stronger at Ri = Ri,, 
being reinforced by buoyancy forces. However, CG fluxes also occur in regions 
removed from hairpins. A DG fluid parcel formed through pumping may later move 
away from generating hairpin. The parcel will then become CG under the influence 
of gravity. The small-scale CG fluxes discussed here are also evident in the radial co- 
spectra of figure 13 and the phase correlations of figure 25. 

For additional description of the hairpin structure see the stratified homogeneous 
shear flow results of Holt (1990), Holt, Koseff &, Ferziger (1989), and Gerz (1989), 
the unstratified homogeneous shear flow results of Rogers et al. (1986), and the 
unstratified inhomogeneous results of Robinson (1990), Moin & Kim (1985), and 
Head & Bandyopadhyay (1981). Robinson (1990) and Holt (1990) also discuss the 
relevance of the pressure field to coherent vorticity structures. 

7.2. Structure at large Richardson number 
The instantaneous fields have also revealed the structure of the large-scale CG fluxes. 
The structure described here was found in the buoyancy dominated h series 
simulated a t  Ri = 0.5 and St = 12. Similar structures were observed at Ri = 1.0 in 
both the h series and the higher-Reynolds-number y series fields. 

A side view of an intense CG vertical density flux (wp < 0) is shown in figure 38. 
The significant correlation between u and p produces a visually similar CG Reynolds 
stress (-uw < 0). These fluxes are composed of light (p  < 0 ) ,  fast (u > 0) fluid moving 
upward (w > 0). Thus we infer that light fluid is travelling up toward a position of 
neutral buoyancy. However, the motion is not vertically upward as might be 
expected in the presence of stratification alone. Instead, as shown in figure 38, the CG 
parcel is inclined approximately 15' to the horizontal. Prior to the appearance of the 
CG fluxes the significant conversion of VKE to PE and the production of streamwise 
velocity fluctuations results in fluid motions that are nearly horizontal. The mean 
rotation may also reduce the inclination angle from that of expansive straining of the 
CG fluid. 

The CG fluid parcel induces vorticity along its perimeter as it moves through the 
ambient fluid and the resulting vortex lines form a helical structure as shown in 
figure 39. The counterclockwise sense of these vorticity lines is consistent with the 
proposition that the buoyant parcel induces vorticity in its wake (recall the left-hand 
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FIGURE 39. Side view of the vorticity lines surrounding the flux of figure 40. 
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FIGURE 40. Velocity vectors in the mid-plane of the structure of figure 39. 

rule). Furthermore, the velocity field in the vertical (z,y) mid-plane of the helix 
(figure 40) indicates that the CG fluid parcel moves in a direction consistent with the 
induced vorticity lines shown in figure 39. Figure 39 also provides a sense of scale of 
the helix ; the vertical and streamwise dimensions of the computational domain are 
approximately 5 and 10 axis units. 
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We close our discussion of coherent vorticity structures by reviewing the physical 
mechanisms of their formation. We argued that the helical structure is induced by 
the motion of CG fluid parcels, whereas the velocity field associated with the hairpin 
structures produce DG fluxes. This proposition is consistent with the degree of 
nonlinearity in each case. For small Ri < Ri,, the nonlinear interactions necessary for 
the formation of hairpins are significant (see $5.1). For example, spanwise vortex 
elements are perturbed into the principal strain directions by such interactions. 
Additional interactions contribute to self-inductive, reinforced pumping of the 
velocity field and ultimately in the formation of fluxes. 

In the case of the helical structures nonlinear transfer is essentially absent ($5.3.3). 
Therefore the CG fluxes must be the result of linear processes which return fluid 
parcels toward their neutrally buoyant positions and, in so doing, induce the helical 
vorticity lines. In the presence of shear, the mean strain, rotation and stratification 
all act to constrain the path of the CG parcel. 

8. Summary 
The evolution and structure of homogeneous stably stratified turbulent shear flow 

have been investigated using direct numerical simulation. The simulation method 
solves the Boussinesq form of the Navier-Stokes equations using the pseudo-spectral 
technique of Rogallo (1981). In these simulations all relevant turbulent lengthscales 
were resolved. Hence, the solutions were restricted to low Reynolds numbers ; effects 
of this have been assessed as far as possible. 

8.1. Richardson-number eSfects 

The effects of increasing Richardson number can be summarized as follows. The 
down-gradient Reynolds stress observed at low Richardson numbers leads to the 
production of streamwise velocity fluctuations. Some of this energy is redistributed 
to the spanwise and vertical components via pressurestrain interactions. The down- 
gradient vertical density flux demonstrates that the vertical kinetic energy associated 
with production events is being converted into potential energy. As the Richardson 
number increases the production and turbulent kinetic energy decrease. 

At sufficiently large Richardson number buoyant fluid parcels eventually return 
toward their neutrally buoyant positions, releasing potential energy to vertical 
kinetic energy and causing a counter-gradient vertical density flux. Some of this 
vertical kinetic energy is redistributed to the streamwise kinetic energy which is 
decaying owing to the reversal of the Reynolds stress and therefore the production. 

8.2.  Richardson-number classi$cation 
The transition Richardson number Ri,, differentiates between shear dominated and 
buoyancy dominated stably stratified shear flow. At the transition Richardson 
number the Reynolds stress and vertical density flux vanish at large dimensionless 
times, signalling a change from shear-driven down-gradient fluxes to counter- 
gradient oscillatory fluxes. 

For Richardson numbers less than the transition value the anisotropy increases 
with increasing Richardson number. This is due to shear-induced production of 
streamwise velocity fluctuations and the conversion of vertical kinetic energy to 
potential energy. For Richardson numbers larger than the transition value the 
anisotropy decreases owing to the reversal in production and the release of potential 
energy to vertical kinetic energy. The ratio of potential energy to vertical kinetic 
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energy also increases with increasing Richardson number up to the transition value 
then decreases slightly. Finally, the transition Richardson number apparently 
increases with increasing Reynolds number. 

In  the shear-dominated regime we observe the stationary Richardson number, Ri,, 
at which the turbulent kinetic energy is nearly constant in time. The stationary 
Richardson number allows us to  differentiate growing from decaying flow, a concept 
relevant to the estimation of vertical fluxes or dissipation rates based on a steady 
state assumption (see Van Atta 1985; Itsweire et al. 1990). 

At low dimensionless shear rate the stationary Richardson number increases with 
increasing Reynolds number. This is because dissipation becomes less important as 
the Reynolds number increases and stronger stratification (a larger stationary 
Richardson number) is necessary to suppress the production of turbulence. At large 
Reynolds number the stationary Richardson number approaches the value (0.25) 
predicted by the linear inviscid stability analysis of Taylor (see Miles 1961). This 
value was also confirmed in the experiments of Rohr et al. (1988b). 

At the stationary condition the stable stratification affects the turbulence growth 
rate primarily by suppressing production rather than directly reducing the 
turbulence growth rate. This effect should be modelled explicitly (see also Gerz et al. 
1989). Finally, the energy spectra a t  the stationary Richardson number reveal that 
the lowest wavenumber modes gain energy in time owing to production whereas the 
higher wavenumber modes lose energy owing to the combined effects of suppressed 
production, reduced nonlinear transfer, and dissipation. 

In  the buoyancy-dominated regime the temporal behaviour of the fluxes and 
energetics scale with the Brunt-Vaisala frequency. Furthermore, the nonlinear 
spectral transfer of energy is severely suppressed, the vertical velocity and density 
are f 180" out of phase, and the instantaneous density profiles reveal that the flow 
field is everywhere statically stable. These latter observations indicate that at large 
Richardson number the flow field is composed primarily of linear low-intensity 
buoyancy-driven counter-gradient motions. 

8.3. Effects of other parameters 
Significant initial potential energy produces a transient counter-gradient vertical 
density flux a t  small times which resolves the initial imbalance in the energy 
partition. The velocity field is also more energetic since turbulent kinetic energy is 
not expended to create potential energy. The developed flow is otherwise relatively 
insensitive to the initial ratio of potential energy to  vertical kinetic energy. This 
result is consistent with that of Gerz & Schumann (1989). However, Hunt et al. (1988) 
showed that the unsheared case is sensitive to the initial potential energy. 

As the Schmidt number is increased fluid parcels retain their density deviation 
from the ambient fluid, enhancing the effects of stable stratification. At large 
Richardson numbers ( R i  > Ri , )  the increasing buoyant parcels are more effectively 
returned toward their neutral positions so that the vertical density flux reversal and 
the reduction in anistropy occur earlier. 

8.4. Coherent structure 

In  the shear dominated case down-gradient fluxes are produced by movement of 
fluid through coherent hairpin-shaped vorticity lines, as previously shown by Rogers 
et al. (1986) in their study of unstratified homogeneous shear flow. In  the buoyancy- 
dominated case counter-gradient fluid parcels induce helical vorticity lines while 
moving toward a position of neutral buoyancy. These counter-gradient fluxes are 
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typically inclined 10"-20" from the horizontal. This is primarily due to the 
dominance of the streamwise velocity over the vertical velocity in the presence of 
shear and strong stratification. 
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